Dynamic noninvasive monitoring of renal function in vivo by fluorescence lifetime imaging.
نویسندگان
چکیده
Kidneys normally filter the blood of excess salts and metabolic products, such as urea, while retaining plasma proteins. In diseases such as multiple myeloma and diabetes mellitus, the renal function is compromised and protein escapes into the urine. In this study, we present the use of fluorescence lifetime imaging (FLI) to image excess serum protein in urine (proteinuria). The near-infrared fluorescent dye LS-288 has distinct lifetimes when bound to protein versus free in solution, providing contrast between the protein-rich viscera and the mostly protein-free bladder. FLI with LS-288 in mice revealed that fluorescence lifetime (FLT) differences in the bladder relative to surrounding tissues was due to the fractional contributions of the bound and unbound dye molecules. The FLT of LS-288 decreased in the case of proteinuria while fluorescence intensity was unchanged. The results show that FLI can be useful for the dynamic imaging of protein-losing nephropathy due to diabetes mellitus and other renal diseases and suggest the potential use of the FLI to distinguish tumors from fluid-filled cysts in the body.
منابع مشابه
Monitoring the biodegradation of dendritic near-infrared nanoprobes by in vivo fluorescence imaging.
Synthetic polymers and dendrimers have been widely used by the medical community to overcome biological barriers and enhance in vivo biomedical applications. Despite the widespread use of biomaterials it has been generally extremely difficult to monitor noninvasively their fate in vivo. Here we report multilayered nanoprobes, consisting of a near-infrared core, nanoencapsulated in a biodegradab...
متن کاملMonitoring the Biodegradation of Dendritic Near-Infrared Nanoprobes by <italic>in Vivo</italic> Fluorescence Imaging
Synthetic polymers and dendrimers have been widely used by the medical community to overcome biological barriers and enhance in vivo biomedical applications. Despite the widespread use of biomaterials it has been generally extremely difficult to monitor noninvasively their fate in vivo. Here we report multilayered nanoprobes, consisting of a near-infrared core, nanoencapsulated in a biodegradab...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملI-55: Molecular Imaging Overview
Molecular imaging is the noninvasive visualization of normal as well as abnormal cellular processes at a molecular or genetic level of function. It is used to provide characterization and measurement of biological processes in living animals and humans (in vivo). The discipline of molecular imaging evolved rapidly over the past decade through the integration of cell biology, molecular biology a...
متن کاملNovel Application of Fluorescence Lifetime and Fluorescence Microscopy Enables Quantitative Access to Subcellular Dynamics in Plant Cells
BACKGROUND Optical and spectroscopic technologies working at subcellular resolution with quantitative output are required for a deeper understanding of molecular processes and mechanisms in living cells. Such technologies are prerequisite for the realisation of predictive biology at cellular and subcellular level. However, although established in the physical sciences, these techniques are rare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2009